# Map projections are nonlinear transforms (λ,φ) -> (x,y) # where λ = longitude φ = latitude # "Winkel tripel" map projection (Oswald Winkel 1874-1953) # This is the arithmetic mean of an equirectangular projection and the # Aitoff projection. # Note: mouse tracking does not correctly report longitude, latitude unset mouse set title "'{/:Bold Winkel tripel}' map projection" π = pi φ1 = acos(2./π) sinc(x) = (x==0) ? 1.0 : sin(x) / x α(λ,φ) = acos(cos(φ) * cos(λ/2.)) x_W3(λ, φ) = 0.5 * (λ*cos(φ1) + (2*cos(φ)*sin(λ/2.))/sinc(α(λ,φ))) y_W3(λ, φ) = 0.5 * (φ + sin(φ)/sinc(α(λ,φ))) set key top right at screen 0.98, 0.95 samplen 0.3 set angle degrees unset xtics unset ytics unset border set lmargin 1 set rmargin 1 set size ratio 0.5 set xrange [-180:180] set yrange [-90:90] plot for [λ=-180:180:10] [φ=-90:90] '+' using (x_W3(λ,φ)):(y_W3(λ,φ)) with lines lc "cyan" lw .5 notitle, \ for [φ = -90:90:30] [λ=-180:180:10] '+' using (x_W3(λ,φ)):(y_W3(λ,φ)) with lines lc "cyan" lw .5 notitle, \ 'world.dat' using (x_W3($1,$2)):(y_W3($1,$2)) with filledcurve fc "brown" title "fill", \ 'world.dat' using (x_W3($1,$2)):(y_W3($1,$2)) with lines lc "black" title "outline" |
# # Hammer equal-area projection (Ernst Hammer 1892) # set title "{/:Bold Hammer} equal-area map projection" x_Hammer(λ, φ) = (2*sqrt(2)*cos(φ)*sin(λ/2)) / sqrt(1.0 + cos(φ)*cos(λ/2)) y_Hammer(λ, φ) = sqrt(2)*sin(φ) / sqrt(1.0 + cos(φ)*cos(λ/2)) # Note: To have mouse tracking report coordinates that correspond to the # map projection, we must define an inverse function dependent on both # screen x and screen y. # Z(x,y) = sqrt( 1.0 - (x/4)**2 - (y/2)**2 ) lon(x,y) = 2. * atan( x*Z(x,y) / (4*Z(x,y)**2 - 2) ) lat(x,y) = asin(Z(x,y)*y) set mouse mouseformat function sprintf("Longitude %.2f Latitude %.2f", lon(x,y), lat(x,y)) set xrange [-π : π] set yrange [-π/2 : π/2] plot for [λ=-180:180:10] [φ=-90:90] '+' using (x_Hammer(λ,φ)):(y_Hammer(λ,φ)) with lines lc "cyan" lw .5 notitle, \ for [φ = -90:90:30] [λ=-180:180:10] '+' using (x_Hammer(λ,φ)):(y_Hammer(λ,φ)) with lines lc "cyan" lw .5 notitle, \ 'world.dat' using (x_Hammer($1,$2)):(y_Hammer($1,$2)) with filledcurve fc "brown" title "fill", \ 'world.dat' using (x_Hammer($1,$2)):(y_Hammer($1,$2)) with lines lc "black" title "outline" |
# # Albers equal-area conic projection # Heinrich C. Albers 1805 # set title "{/:Bold Albers} equal-area conic projection" set auto φ0 = 0. φ1 = 0. φ2 = 60. λ0 = 0. n = 0.5 * (sin(φ1) + sin(φ2)) θ(λ) = n*(λ-λ0) C = cos(φ1)**2 + 2*n*sin(φ1) ρ(φ) = sqrt(C - 2*n*sin(φ)) / n ρ0 = ρ(φ0) x_Albers(λ, φ) = ρ(φ) * sin(θ(λ)) y_Albers(λ, φ) = ρ0 - ρ(φ)*cos(θ(λ)) clip(south) = south < -60. ? NaN : south # # inverse functions for map readout # lon(x,y) = atan( x/(ρ0-y) ) / n lat(x,y) = asin( (C - n*n*(x**2 + (ρ0-y)**2)) / (2*n) ) mouse_readout(x,y) = sprintf("Longitude %.2f Latitude %.2f", lon(x,y), lat(x,y)) set mouse mouseformat function mouse_readout(x,y) plot for [λ=-180:180:10] [φ=-60:90] '+' using (x_Albers(λ,φ)):(y_Albers(λ,φ)) with lines lc "cyan" lw .5 notitle, \ for [φ = -60:90:10] [λ=-180:180:10] '+' using (x_Albers(λ,φ)):(y_Albers(λ,φ)) with lines lc "cyan" lw .5 notitle, \ 'world.dat' using (x_Albers($1,clip($2))):(y_Albers($1,clip($2))) with filledcurve fc "brown" title "fill", \ 'world.dat' using (x_Albers($1,clip($2))):(y_Albers($1,clip($2))) with lines lc "black" title "outline" |
# return mouse readout to default state set mouse mouseformat 0 |