|
#
#
#
# Check support for BesselK
if (!strstrt(GPVAL_COMPILE_OPTIONS, "+AMOS")) {
print "This copy of gnuplot does not support BesselK"
exit # return to caller
}
save_encoding = GPVAL_ENCODING
set encoding utf8
set xrange [0:5]
set yrange [0:10]
set sample 201
set title "Modified Bessel functions of the second kind"
plot for [K=0:5] BesselK(K,x) lw 3 title sprintf("Bessel K_{%d}(x)",K)
|
|
set xrange [-5:5] set yrange [-5:5] set zrange [-10:5] set xyplane 0 set view 42, 33 set xlabel "x" set ylabel "iy" set hidden3d unset colorbox set sample 201 set isosample 201 splot real(BesselK(0, x+y*I)) with lines lw .2 |
|
set pm3d lighting spec2 0.6 splot imag(BesselK(0, (x+y*I))) lw .2 with pm3d fc "gray" |
|
set xrange [-pi/2:pi/2]
set yrange [-pi/2:pi/2]
set zrange [-2:8]
set tics 1
set colorbox
set cbrange [-pi:pi]
set cbtics ("-π" -pi, "0" 0, "π" pi)
set palette cubehelix
set border -1
set xyplane 0
set sample 300
set isosample 300
set title "{/Times=16 complex Bessel function} {/Times:Italic=16 |K_{1/2} (x + iy)|}"
unset key
splot '++' using 1:2:( abs(BesselK( 0.5, x+y*I )) ):( arg(BesselK( 0.5, x+y*I )) ) with pm3d
|
|
set border -1 set grid x y z vertical set view 41, 19 set samples 50, 50 set isosamples 50, 50 set hidden3d set xyplane 0 set ztics 10 set xrange [ -2.0 : 2.0 ] set yrange [ -2.0 : 2.0 ] set zrange [ -25. : 15. ] set pm3d border lt black set pm3d lighting primary 0.4 specular 0.3 spec2 0.1 unset colorbox splot imag( BesselK( nu=4, x+y*I) ) with pm3d fc ls 3 |
|
set encoding save_encoding |