# set terminal pngcairo background "#ffffff" enhanced font "arial,10" fontscale 1.0 size 600, 400 # set output 'airfoil.3.png' set dummy t,y set key inside right top vertical Right noreverse enhanced autotitles box linetype -1 linewidth 1.000 set parametric set style data lines set title "Joukowski Airfoil using Complex Variables" set timestamp "%a %b %d %H:%M:%S %Y" set trange [ 0.00000 : 6.28319 ] noreverse nowriteback set xlabel "eps = 0.06 real" set xrange [ -0.600000 : 0.600000 ] noreverse nowriteback set yrange [ -0.200000 : 1.80000 ] noreverse nowriteback bez_d4_i0(x) = (1 - x)**4 bez_d4_i1(x) = 4 * (1 - x)**3 * x bez_d4_i2(x) = 6 * (1 - x)**2 * x**2 bez_d4_i3(x) = 4 * (1 - x)**1 * x**3 bez_d4_i4(x) = x**4 bez_d8_i0(x) = (1 - x)**8 bez_d8_i1(x) = 8 * (1 - x)**7 * x bez_d8_i2(x) = 28 * (1 - x)**6 * x**2 bez_d8_i3(x) = 56 * (1 - x)**5 * x**3 bez_d8_i4(x) = 70 * (1 - x)**4 * x**4 bez_d8_i5(x) = 56 * (1 - x)**3 * x**5 bez_d8_i6(x) = 28 * (1 - x)**2 * x**6 bez_d8_i7(x) = 8 * (1 - x) * x**7 bez_d8_i8(x) = x**8 mean_y(t) = m0 * mm * bez_d4_i0(t) + m1 * mm * bez_d4_i1(t) + m2 * mm * bez_d4_i2(t) + m3 * mm * bez_d4_i3(t) + m4 * mm * bez_d4_i4(t) mean_x(t) = p0 * bez_d4_i0(t) + p1 * bez_d4_i1(t) + p2 * bez_d4_i2(t) + p3 * bez_d4_i3(t) + p4 * bez_d4_i4(t) z_x(x) = x0 * bez_d8_i0(x) + x1 * bez_d8_i1(x) + x2 * bez_d8_i2(x) + x3 * bez_d8_i3(x) + x4 * bez_d8_i4(x) + x5 * bez_d8_i5(x) + x6 * bez_d8_i6(x) + x7 * bez_d8_i7(x) + x8 * bez_d8_i8(x) z_y(x, tk) = y0 * tk * bez_d8_i0(x) + y1 * tk * bez_d8_i1(x) + y2 * tk * bez_d8_i2(x) + y3 * tk * bez_d8_i3(x) + y4 * tk * bez_d8_i4(x) + y5 * tk * bez_d8_i5(x) + y6 * tk * bez_d8_i6(x) + y7 * tk * bez_d8_i7(x) + y8 * tk * bez_d8_i8(x) airfoil_y1(t, thick) = mean_y(z_x(t)) + z_y(t, thick) airfoil_y2(t, thick) = mean_y(z_x(t)) - z_y(t, thick) airfoil_y(t) = mean_y(z_x(t)) airfoil_x(t) = mean_x(z_x(t)) zeta(t) = -eps + (a+eps)*exp(t*{0,1}) eta(t) = zeta(t) + a*a/zeta(t) mm = 0.0 thick = 0.12 pp = 0.5 x0 = 0.0 y0 = 0.0 x1 = 0.0 y1 = 0.18556 x2 = 0.03571 y2 = 0.34863 x3 = 0.10714 y3 = 0.48919 x4 = 0.21429 y4 = 0.58214 x5 = 0.35714 y5 = 0.55724 x6 = 0.53571 y6 = 0.44992 x7 = 0.75 y7 = 0.30281 x8 = 1.0 y8 = 0.0105 GPFUN_bez_d4_i0 = "bez_d4_i0(x) = (1 - x)**4" GPFUN_bez_d4_i1 = "bez_d4_i1(x) = 4 * (1 - x)**3 * x" GPFUN_bez_d4_i2 = "bez_d4_i2(x) = 6 * (1 - x)**2 * x**2" GPFUN_bez_d4_i3 = "bez_d4_i3(x) = 4 * (1 - x)**1 * x**3" GPFUN_bez_d4_i4 = "bez_d4_i4(x) = x**4" GPFUN_bez_d8_i0 = "bez_d8_i0(x) = (1 - x)**8" GPFUN_bez_d8_i1 = "bez_d8_i1(x) = 8 * (1 - x)**7 * x" GPFUN_bez_d8_i2 = "bez_d8_i2(x) = 28 * (1 - x)**6 * x**2" GPFUN_bez_d8_i3 = "bez_d8_i3(x) = 56 * (1 - x)**5 * x**3" GPFUN_bez_d8_i4 = "bez_d8_i4(x) = 70 * (1 - x)**4 * x**4" GPFUN_bez_d8_i5 = "bez_d8_i5(x) = 56 * (1 - x)**3 * x**5" GPFUN_bez_d8_i6 = "bez_d8_i6(x) = 28 * (1 - x)**2 * x**6" GPFUN_bez_d8_i7 = "bez_d8_i7(x) = 8 * (1 - x) * x**7" GPFUN_bez_d8_i8 = "bez_d8_i8(x) = x**8" m0 = 0.0 m1 = 0.1 m2 = 0.1 m3 = 0.1 m4 = 0.0 GPFUN_mean_y = "mean_y(t) = m0 * mm * bez_d4_i0(t) + \t m1 * mm * bez_d4_i1(t) + \t m2 * mm * bez_d4_i2(t) + \t m3 * mm * bez_d4_i3(t) + \t m4 * mm * bez_d4_i4(t)" p0 = 0.0 p1 = 0.2 p2 = 0.4 p3 = 0.7 p4 = 1.0 GPFUN_mean_x = "mean_x(t) = p0 * bez_d4_i0(t) + \t p1 * bez_d4_i1(t) + \t p2 * bez_d4_i2(t) + \t p3 * bez_d4_i3(t) + \t p4 * bez_d4_i4(t)" GPFUN_z_x = "z_x(x) = x0 * bez_d8_i0(x) + x1 * bez_d8_i1(x) + x2 * bez_d8_i2(x) + \t x3 * bez_d8_i3(x) + x4 * bez_d8_i4(x) + x5 * bez_d8_i5(x) + \t x6 * bez_d8_i6(x) + x7 * bez_d8_i7(x) + x8 * bez_d8_i8(x)" GPFUN_z_y = "z_y(x, tk) = y0 * tk * bez_d8_i0(x) + y1 * tk * bez_d8_i1(x) + y2 * tk * bez_d8_i2(x) + y3 * tk * bez_d8_i3(x) + y4 * tk * bez_d8_i4(x) + y5 * tk * bez_d8_i5(x) + y6 * tk * bez_d8_i6(x) + y7 * tk * bez_d8_i7(x) + y8 * tk * bez_d8_i8(x)" GPFUN_airfoil_y1 = "airfoil_y1(t, thick) = mean_y(z_x(t)) + z_y(t, thick)" GPFUN_airfoil_y2 = "airfoil_y2(t, thick) = mean_y(z_x(t)) - z_y(t, thick)" GPFUN_airfoil_y = "airfoil_y(t) = mean_y(z_x(t))" GPFUN_airfoil_x = "airfoil_x(t) = mean_x(z_x(t))" eps = 0.06 a = 0.25 GPFUN_zeta = "zeta(t) = -eps + (a+eps)*exp(t*{0,1})" GPFUN_eta = "eta(t) = zeta(t) + a*a/zeta(t)" plot real(eta(t)),imag(eta(t))