# # # # Check support for BesselK if (!strstrt(GPVAL_COMPILE_OPTIONS, "+AMOS")) { print "This copy of gnuplot does not support BesselK" exit # return to caller } save_encoding = GPVAL_ENCODING set encoding utf8 set xrange [0:5] set yrange [0:10] set sample 201 set title "Modified Bessel functions of the second kind" plot for [K=0:5] BesselK(K,x) lw 3 title sprintf("Bessel K_{%d}(x)",K) |
set xrange [-5:5] set yrange [-5:5] set zrange [-10:5] set xyplane 0 set view 42, 33 set xlabel "x" set ylabel "iy" set hidden3d unset colorbox set sample 201 set isosample 201 splot real(BesselK(0, x+y*I)) with lines lw .2 |
set pm3d lighting spec2 0.6 splot imag(BesselK(0, (x+y*I))) lw .2 with pm3d fc "gray" |
set xrange [-pi/2:pi/2] set yrange [-pi/2:pi/2] set zrange [-2:8] set tics 1 set colorbox set cbrange [-pi:pi] set cbtics ("-π" -pi, "0" 0, "π" pi) set palette cubehelix set border -1 set xyplane 0 set sample 300 set isosample 300 set title "{/Times=16 complex Bessel function} {/Times:Italic=16 |K_{1/2} (x + iy)|}" unset key splot '++' using 1:2:( abs(BesselK( 0.5, x+y*I )) ):( arg(BesselK( 0.5, x+y*I )) ) with pm3d |
set border -1 set grid x y z vertical set view 41, 19 set samples 50, 50 set isosamples 50, 50 set hidden3d set xyplane 0 set ztics 10 set xrange [ -2.0 : 2.0 ] set yrange [ -2.0 : 2.0 ] set zrange [ -25. : 15. ] set pm3d border lt black set pm3d lighting primary 0.4 specular 0.3 spec2 0.1 unset colorbox splot imag( BesselK( nu=4, x+y*I) ) with pm3d fc ls 3 |
set encoding save_encoding |