That's why it is called 'least-squares fitting'. Let's look at an example to see what is meant by 'non-linear', but first we had better go over some terms. Here it is convenient to use z as the dependent variable for user-defined functions of either one independent variable, z=f(x), or two independent variables, z=f(x,y). A parameter is a user-defined variable that fit will adjust, i.e., an unknown quantity in the function declaration. Linearity/non-linearity refers to the relationship of the dependent variable, z, to the parameters which fit is adjusting, not of z to the independent variables, x and/or y. (To be technical, the second {and higher} derivatives of the fitting function with respect to the parameters are zero for a linear least-squares problem).
For linear least-squares (LLS), the user-defined function will be a sum of
simple functions, not involving any parameters, each multiplied by one
parameter. NLLS handles more complicated functions in which parameters can
be used in a large number of ways. An example that illustrates the
difference between linear and nonlinear least-squares is the Fourier series.
One member may be written as
z=a*sin(c*x) + b*cos(c*x).
In the linear case, parameter values can be determined by comparatively
simple linear algebra, in one direct step. However LLS is a special case
which is also solved along with more general NLLS problems by the iterative
procedure that gnuplot uses. fit attempts to find the minimum by doing
a search. Each step (iteration) calculates WSSR with a new set of parameter
values. The Marquardt-Levenberg algorithm selects the parameter values for
the next iteration. The process continues until a preset criterion is met,
either (1) the fit has "converged" (the relative change in WSSR is less than
FIT_LIMIT), or (2) it reaches a preset iteration count limit, FIT_MAXITER
(see fit control variables (p. )). The fit may also be interrupted
and subsequently halted from the keyboard (see fit (p.
)). The user variable
FIT_CONVERGED contains 1 if the previous fit command terminated due to
convergence; it contains 0 if the previous fit terminated for any other
reason.
Often the function to be fitted will be based on a model (or theory) that
attempts to describe or predict the behaviour of the data. Then fit can
be used to find values for the free parameters of the model, to determine
how well the data fits the model, and to estimate an error range for each
parameter. See fit error_estimates (p. ).
Alternatively, in curve-fitting, functions are selected independent of a model (on the basis of experience as to which are likely to describe the trend of the data with the desired resolution and a minimum number of parameters*functions.) The fit solution then provides an analytic representation of the curve.
However, if all you really want is a smooth curve through your data points, the smooth option to plot may be what you've been looking for rather than fit.